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An accelerated simultaneous iteration method is presented for the solution of the 
generalized eigenproblem Ax = I.Bx, where A and B are real sparse symmetric positive definite 
matrices. The approach is well suited for the determination of the leftmost eigenpairs of 
problems with large size N. The procedure relies on the optimization of the Rayleigh quotient 
over a subspace of orthogonal vectors by a conjugate gradient technique effectively precondi- 
tioned with the pointwise incomplete Cholesky factorization. The method is applied to the 
evaluation of the smallest 15 eigenpairs of finite element models with size ranging between 150 
and 2300. The numerical experiments show that, while the simultaneous conjugate gradient 
scheme fails to converge, the accelerated iterations yield accurate results in a number of steps 
which is much smaller than N. The new approach does not require the a priori estimate of 
any empirical parameter and appears to be a robust, reliable, and efficient tool for the partial 
eigensolution of large finite element problems. 0 1989 Academic Press, Inc. 

INTRODUCTION 

The evaluation of the p leftmost eigenpairs of the generalized eigenvalue problem 

Ax = IBx, 

where A and B are large sparse symmetric positive definite matrices, is an impor- 
tant task in many engineering and physical problems, e.g., in structural mechanics 
[l-3], hydrodynamics [4] and plasma physics [5-71. Typically the value of p is 
much smaller than the matrix size N, which may be several hundreds or even many 
thousands large. 

To find the eigensolution of sparse linear problems the Lanczos method [8] has 
been used (Paige [9]; Cullum and Willoughby [ 10, 111). A block generalization, 
especially designed for the extreme eigenpairs of A, has been developed by Golub 
and Underwood [ 121 and Cullum and Donath [ 131. The Lanczos method and its 
variants require several iterations (sometimes more than N) to converge to an 
accurate approximation of the leftmost eigenspectrum. Spectral transformations 
employing the Lanczos technique have been proposed by Ericsson and Ruhe [14], 
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but they require the triangular factorization of several shifted matrices. Although 
attractive at the theoretical level, this approach is precluded for large arbitrarily 
sparse matrices on the grounds of impracticality. 

Recently iterative algorithms based on multiple Rayleigh quotient optimization 
[15, 163 or trace minimization [17] or penalty function optimization [ 181 have 
been developed. The schemes which rely on the Rayleigh quotient optimization are 
particularly attractive, since they are simple to implement and well suited to vec- 
torization (for a short review of these methods see [ 191). Some of them require the 
“a priori” knowledge of an empirical acceleration parameter (e.g., the coordinate 
relaxation method [ 16, 20]), which reduces drastically their importance in practical 
applications. Others are based upon the gradient or conjugate gradient (CG) itera- 
tions but generally their convergence is very slow with large matrices of arbitrary 
structure. However the latter may be greatly improved if the CG scheme is 
effectively preconditioned [21]. 

An excellent review of several preconditioning techniques may be found in 
Concus et al. [22]. Many preconditioners belong to the class of the incomplete 
Cholesky decompositions (Evans [23]; Tuff and Jennings, [24]; Concus et al. 

[25]; Axelsson [26]; Jennings and Malik [27]; Gustafsson [28]; Kershaw [29]; 
Gambolati [30, 311; Gambolati and Volpi [32]; Gustafsson [33]; Manteuffel 
[34]; Eisenstat [35]; Appleyard and Cheshire [36]; Axelsson and Gustafsson [37]; 
Jacobs [38]; Jennings [39]; Ajiz and Jennings [40]; Nour-Omid [41]; Jackson 
and Robinson [42]; Tismenetsky and Efrat [43]; Wong et al. [44]; Zyvoloski 
[45]). Although sophisticated polynomial [46,47] and multistep [48] precondi- 
tioners have been developed, mainly for the efficient implementation of parallel 
algorithms, the diagonal scaling and the pointwise incomplete Cholesky factoriza- 
tion of Kershaw [29], referred to as ICCG(0) by Meijerink and van der Vorst 
[49], represent two of the most inexpensive and widespread choices. In particular 
ICCG(0) turned out to be a reliable and efficient tool for the solution to both linear 
systems and eigenproblems in a finite element context (Gambolati et al. [SO]). 

Preconditioning has been used along with a stepwise deflation technique [ 193 to 
evaluate successfully several of the smallest eigenpairs. The results proved very 
encouraging and the method rather cost-effective. However, a disadvantage of the 
approach described in [ 191 is the need for the assessment of a deflation parameter 
which is related to the eigenvalues distribution and, although not difficult to 
estimate in practice, is to some extent problem dependent. 

The idea underlying the present work is to accelerate the simultaneous CG 
methods developed by Longsine and McCormick [ 151 and Schwarz [16] with the 
ICCG(0) preconditioning. 

It is shown with representative numerical examples, arising from the finite ele- 
ment integration of flow and structural equations, that preconditioning is essential 
to ensure practical convergence. The new procedure is applied to compute 
simultaneously the 15 leftmost eigenpairs of arbitrarily sparse matrices whose size 
ranges from 150 to 2300. The number of iterations required to obtain accurate 
results turns out to be by far less than N. 
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Finally, as was already noted in [15, 163, it is shown that to have a good con- 
vergence the overall procedure is to be restarted every 10-20 modified conjugate 
gradient (MCG) iterations, possibly by performing a Ritz projection step. 

1. ACCELERATION OF 
THE SIMULTANEOUS RAYLEIGH QUOTIENT MINIMIZATION 

Let A and B be sparse symmetric positive definite N x N matrices. 
Consider the generalized eigenvalue problem: 

Ax = IBx. (1) 

Denote by 

and 

V N, VN- 17 .-a, Vl 

the eigenvalues and the corresponding eigenvectors. 
It can be proved (cf. [51]) that the eigenvectors of (1) are the stationary points 

of the Rayleigh quotient 

The gradient of R(x) is given by 

n(x)=& (Ax-R(x) Bx). 

(2) 

(3) 

For the sake of brevity we set gck) = g(x@)). 
Let us consider the Rayleigh quotient conjugate gradient (RQCG) method, 

which yields the leftmost eigenpair (A,, vN) of (l), by minimizing (2) along a set of 
suitable directions (cf. [ 191). 

Let x(O) and p(-‘) be an initial guessed vector and the zero vector, respectively. 
The typical RQCG kth iteration, with k = 0, 1, . . . . consists essentially of two 

steps: 

(a) search for a minimization direction pck) expressed as 

P (k)=g(k)+B(k~l)P(k-l), 

where fl’“- ‘) is a parameter which will be given later. 
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(b) evaluation of a new approximation xck+‘) to vN along pck’ through xc“) 
written as 

X(k + 1’ = Xw’ + ,ck’p’k’, (5) 

where 8‘) is obtained by minimizing the quantity 

R(XCk’ + dk’p’k’). (6) 

The RQCG iterations are continued until the relative residual 

rFkj = IIAxck’- R(x’~‘) Bxck’ll , 

IlA~(~‘ll (7) 

where (I .[I stands for the euclidean norm, is smaller than a prescribed tolerance. 
Since in most engineering and physical problems it is necessary to compute a 

number of the leftmost eigenpairs of (l), an extension of the RQCG scheme has 
been devised [ 15, 163, which allows for the simultaneous evaluation of the leftmost 
p eigenpairs of (1) (in the sequel 1 < p < 15 is assumed). 

The basic idea underlying the simultaneous conjugate gradient (SRQCG) itera- 
tions is to start from an arbitrary set xi’), i= 1 , . . . . p of vectors and to minimize (2) 
at the kth iteration along a set of p directions pjk’, i = 1, . . . . p. 

For the sake of brevity, in the sequel we shall denote by xik), pjk’, gjk’, k = 1, . . . . 
i=l , . . . . p the columns of the N x p matrices Xtk), Ptk), and Gck), respectively. 

If X(k’TBX(k) = I,,, where I,, is the p xp identity matrix, we set 

Gck’ = ‘&4Xck’ - BX’k’&[X’k’])* 7 (8) 

DR[X’k’] is the diagonal matrix whose entries are the diagonal coefficients of the 
p x p Rayleigh matrix X(kPAX(k). 

In extending the RQCG algorithm to the evaluation of p eigenpairs, the 
minimization parameter ack) is substituted by the p xp matrix dck’ such that, as is 
pointed out in [15], the columns of 

x(k) + p’k’d’k’ (9) 

“in some sense represent the best set of solutions of (1) from span(X(k),P(k’), the 
column span of (Xck’, Pck)).” 

In principle, dck’ is a full p xp matrix, but to reduce the computational cost we 
take into account in (9) only diagonal matrices. 

The most natural way to extend the RQCG algorithm is to minimize (6) 
separately for each search direction. However, to avoid convergence toward the 
same eigenvector vN, the approximating vectors are to be kept B-orthogonal in the 
iterative procedure. 

Note that the vectors xtk’ , , i = 1, . . . . p, can be thought of as “the (approximated) 
eigenvectors,” if they converge to v,,,, . . . . v,,, --p + i, when k increases. 
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The SRQCG scheme can be described as follows. Let us assume that a set of 
approximations Xck) was computed, together with a set of directions Ptk) obtained 
by performing p times the step (a) of RQCG. 

For i=l , . . . . p, perform steps 1, 2, 3,4: 

(1) compute jz{“’ and elk’ by B-orthogonalizing xi”’ and pik’ with respect to 
vi= {xy+l), j= 1, . . . . i-l}; 

(2) determine the parameter atk) which minimizes 

R($k) + pp’); (10) 

(3 ) compute 
c$ + 1) = ilk’ + CrWpiW; 

(4) evaluate xik+‘) by B-normalizing %ik+‘). 

(11) 

The previous procedure is labelled SIRQCG in [ 161 and will be called SRQCGl 
in the sequel. 

A slightly different scheme, named here as SRQCG2 and referred to as 
SIRQIT-CG by Longsine and McCormick, is proposed in [15]. SRQCG2 consists 
again of 4 steps, but step 1 does not perform one of the two B-orthogonalizations, 
being 2;“) = xik), while in step 4, xi” + ‘) is evaluated by B-orthonormalizing jZjk+ ‘) 
with respect to Vi. 

Let 
r!k’ = Ax(.~’ - Bx!~‘R(x!~‘) I I J 3 (12) 

be the jth residual vector and r!‘Jj = \Jr~‘l(/\lAx~‘ll the jth relative residual. 
The SRQCGl and SRQCG2 schemes repeat the respective iterations until the 

average relative residual ra), defined as 

rP)=Jm (13) 

becomes smaller than a prescribed tolerance TOLL, the leftmost p eigenpairs being 
computed, each one with at least a relative accuracy equal to TOLL. The accuracy 
on the eigenvalues being squared (see [52]), it is also lNpj+ 1 = R(xy’), j = 1, . . . . p. 

Experience shows for SRQMCGl and SRQMCGZ to converge practically, a 
recurring “reset” operation is to be executed after a given number NREST of 
iterations is completed [15, 161. 

Such a reset operation might in principle consist of simply restarting the 
conjugate gradient scheme, namely setting 

(14) 

then proceeding from the beginning of the SRQCG iteration. However, the evalua- 
tion of a new approximation set X (k) through a Ritz projection step proves more 
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effective, as is shown in the next section. The related “full” restart operation consists 
of the following operations [ 161: first the solution Y = {y,, i= 1, . . . . p} to the 
problem (1) orthogonally projected over the subspace span(Xck’) is derived. The yi 
are computed in such a way that Y’BY = I, and D = (&) = YTAY is a diagonal 
matrix for which if i < j then dii < a# holds true. Next, Xck’ = Y is set and the Gck) 
and Pck) directions are obtained from (8) and (14), respectively. 

Despite this improvement, SRQCGI and SRQCG2 prove very inefficient to solve 
large sparse finite element eigenproblems, as is shown in Section 2. 

A similar problem was met in the RQCG computation of the leftmost eigenpair 
of large sparse matrices [4,21]. The performance of RQCG was highly enhanced 
by the use of a suitable preconditioning technique [4, 211, which consists of 
minimizing the quotient 

NY) = 
yTX ~ ‘AX - ’ y 
yTXp’BX-‘y’ 

Equation (15) is derived from (2) by the variables transformation 

y=xx, (16) 

X being a symmetric matrix. 
The transformation (16) leaves the stationary values of (2) unchanged, while the 

corresponding stationary points are readily obtained from (16). 
Applying the RQCG scheme to (15), then restoring the original variable x, yield 

the preconditioned scheme [4, 19,211, where the so-called “preconditioning 
matrix” 

K-1 =X-IX-’ 

is introduced. Depending upon the choice of K-l, a class of preconditioned RQCG 
procedures is obtained, which we call RQMCG (“M” means modified, i.e., 
preconditioned). 

The combination of a RQMCG algorithm with a deflation technique has led to 
an efficient scheme for the solution of the partial eigenproblem with p up to 20. This 
approach is described in detail in [19]. However, a deficiency of the overall 
procedure is the need for the a priori assessment of a deflation parameter which, 
although it is not highly sensitive to the eigenvalues distribution, is problem- 
dependent. The idea underlying the present work is to precondition the 
simultaneous iterations SRQCGl and SRQCG2 (thereafter called SRQMCGl and 
SRQMCG2, respectively), thus eliminating the need for any empirical parameter 
estimate. 

We refer to SRQMCG2, which turns out to be slightly more eflicient than 
SRQMCGl. The SRQMCG2 scheme consists of the following steps: 

Step 1. Define and compute the preconditioning matrix K-’ (this step will be 
analysed later). 
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Step 2. Give a N xp matrix X(O) such that X(OPBX(‘) = I,, a tolerance value 
TOLL, the allowed maximum number of iterations NITMAX and a “restart” value 
NREST. Compute the initial residual matrix as 

M,(X’“‘) = AX(O) - BX’“‘&(X’o’) = ;G’O’ (17) 

and the average relative residual r. (O). Set k = 0 (iteration index). 

As long as k is smaller than NITMAX and P-L’) is greater than TOLL, execute 
Steps 3, 4, and 5; otherwise go to Step 6. 

Step 3. If mod(k, NREST) # 0, 
3.1.1. Set Xc’) = Xck) and evaluate the parameters /Ii, . . . . /I,, by the formula 

(cf. C531) 

(18) 

where Ilxlli-l= xTK-‘x. 
3.1.2. Set rck-ll)= diag(fi,, . . . . B,) and compute 

p(k)=K-lM,(ff(k))+p(k-l)~k--l); 

otherwise 

(19) 

3.2.1. Compute Xck) as the B-orthonormal solution to the problem (1) 
projected onto span(Xck)), the vector subspace generated by the 
columns of the matrix Xck’. This is the Ritz step. 

3.2.2. Set 
pck) = K - l&j(fZ(k))s (20) 

Step 4. Evaluate the new matrix 

g:(k+ 1) =x(k) + fWO~(W dck) = diag(a,, . . . . aP). (21) 

More precisely, for each j= 1, . . . . p: 

4.1. The vector $’ is evaluated by B-orthogonalizing py) with respect to 
vi= {xik+‘), . ..) xjkfi’)}; 

4.2. The coefficients aj are obtained by minimizing the Rayleigh quotient 

R(g!k) + a.iP)) I J J 

and the vector 
g(.k+ 1) = j~jk’+ ajfijW 

J 

is computed. 
4 3 . . xtk+ I) is evaluated by B-orthonormalizing %y+‘) with respect to Vi. I 
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Step 5. Compute the residual matrix Mr(X(kfl)) together with the value 
rckf I) Increment the iteration counter k and go back to the loop start. a . 

Step 6. If r,’ is smaller than TOLL, R(xy’) and x?), j= 1, . . . . p, are the 
smallest p eigenvalues of ( 1) and the corresponding eigenvectors, respectively. 

When Step 4.1 is modified by adding the B-orthogonalization of SF) with respect 
to V, and the B-orthonormalization is substituted by a B-normalization in Step 4.3, 
the variant SRQMCGl is obtained. 

The following remarks are worth emphasizing: 

(a) The Ritz step, 3.2.1, is equivalent to solving the problem 

A,Y =PY, A, = xVdTAx(W 9 

where y is a p-dimensional vector and X(k)TBX(k) = I,. An orthogonal matrix Q is 
found such that 

QTA,Q=diag(~Lp,...,~UI), 
. then 

$&?&~1;D. 
we set Xck) = Xck)Q. So X(k)TAX(k) is a diagonal matrix and 

(b) The scalars aj needed in Step 4.2 are obtained as follows. Set 

2 = i(,k’ 
J 

p=jjI”’ 

a=(p=AI) b= (@=Afi) 

c = (@=B%) d = (@=Bp) 

m = (jZTB%) n=(fi=A%) 

6 = (nd- mb)* - 4(bc - ad)(ma - nc). 

It turns out that [19] 

aj = f(nd- mb + $)/(bc - ad). (22) 

Consider now the preconditioning matrix K-i. For the sake of simplicity we 
restrict our analysis to the case B= I,. If K - ’ = I,,,, SRQMCG2 coincides with 
SRQCG2. The cheapest selection for K -’ is provided by 

K-1 =D-’ 9 

D being the diagonal matrix formed by the diagonal entries of A. 
However, a more efficient choice in the overall procedure is 

(23) 

K-’ = (LL=)-‘, (24) 

L being the pointwise incomplete Cholesky factor of A [29]. 
The algorithms SRQMCG2(D) and SRQMCG2(L) are designated accordingly. 
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2. NUMERICAL RESULTS 

Some representative numerical results are provided in this section. They were 
obtained with a FORTRAN code performing double precision operations on the 
IBM 4341/2 computer of the University of Padua. 

Four arbitrarily sparse finite element matrices A are considered. They arise from 
the finite element integration of subsurface 3D flow equations and 2D elasticity 
equations for layered structures subject to vertical and horizontal land subsidence. 
The size of A is 156, 812, 1802, and 2304. The related irregular sparsity patterns are 
displayed in [19]. 

All the figures given in the sequel report the behaviour of the average residual rb”’ 
versus the number of iterations k in the computation of the leftmost p eigenpairs. 
B = I,,, and p = 15 is assumed. 

The starting set X(O) was obtained by orthonormalizing the set of vectors 
(fi, i = 1, . . . . p}, where for each i and j = 1, . . . . N we have taken 

if i=j or j>p 
otherwise, 

rl being an arbitrary number, This set was found after some trials. Actually at the 
beginning we used the set {ei, i= 1, . . . . p>, ei being the ith coordinate direction. 
Surprisingly, some ei proved so close to an eigenvector v, _ k + 1, k > p, of some test 
matrices, that gj”’ was numerically zero. 

Unless otherwise specilied, NREST = 20 is assumed in the numerical experiments 
that follow. 

Figure 1 shows that already for N= 156 the simultaneous iteration methods 
SRQCGl [16] and SRQCG2 [lS] do not converge in practice, while the 
accelerated scheme SRQMCG2(L) achieves a very accurate solution after a few 
tens of iterations. Figure 1 suggests that preconditioning is fundamental to have 
convergence which appears to rely primarily on the quality of the preconditioner. 
Figures 2, 3, and 4 are similar to Fig. 1 and have been derived for N= 812, 
1802, and 2304, respectively. Again we observe that the convergence rate of 
SRQMCG2(L) is very high, while the simultaneous algorithms without acceleration 
fail to work. It is to be noted that the pointwise incomplete Cholesky decomposi- 
tion requires a small computational effort (as compared to a single SRQMCG2(L) 
iteration) and a limited amount of additional computer storage for L. Superior pre- 
conditioners are more expensive in terms of both CPU time and memory require- 
ment. Figures 1 through 4 indicate that our preconditioning is very effective regar- 
dless of the magnitude of the spectral condition number of the Hessian (see [53]) 
which for our test matrices achieves values of the order of 10” [19]. With regard 
to SRQMCG2(D), Figs. 3 and 4 emphasize that a simple diagonal scaling may 
represent a very poor preconditioning, especially if A is not diagonally dominant 
(the matrix with N= 1802 indeed is not). Note that the average residual does not 
decrease monotonically with k and may display significant oscillations (Fig. 4). 
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FIG. 1. Convergence profiles in the calculation of the leftmost p eigenpairs by the simultaneous 
iteration method with and without preconditioning (N= 156). 
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FIG. 2. The same as Fig. 1 for N = 812. 



SIMULTANEOUS EIGENSOLUTION OF LARGE MATRICES 63 

lOI 
,(k) 0 a 

-1 

-2 

-3 

-4 

-c. 

-E 

SRQCGl and sRQCG2 

-J-----‘--“-i.‘-.-n .I\\.~_d...* _ ~ ., 
-._ 1.. _“- ..__c.. 

SRQMCGP (D) 

c 

Ii - I  

SRQMCGP (L) 16’0 100 200 300 400 500 

r 

I I I 1  

ITERATIONS 

FIG. 3. The same as Fig. 1 for N= 1802. 

lo1 , I I I 

(k) 
SRQCGl and SRQCGZ 

r 
a SRQMCG2 (0) 

-5 

-6 

I- 
16'0 

- 
sRQMCG2 (L) 

I I I , 

100 200 300 400 

ITERATIONS 

5( 
I 
IO 

FIG. 4. The same as Fig. 1 for N = 2304. 
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As is generally expected, the convergence rate toward vN-,+ i decreases as the 
eigenpair level j increases, i.e., the leftmost eigenvectors are determined earlier. This 
is shown in Fig. 5 for SRQMCG2(L) and N= 156, but the profile behaviour is the 
same for the larger values of N as well. Figure 5 provides documentary evidence 
that the average convergence (profile denoted by “+“) slows down as the number 
p of wanted eigenpairs increases. 

The influence of the restarting Ritz step on the convergence of SRQMCG2(L) is 
pointed out in Figs. 6 and 7, relevant to N= 812 and N= 2304, respectively. It is 
worth observing that the accelerated simultaneous iterations fail to converge if the 
restarting procedure is not performed. This is so because the orthogonalization pro- 
cess applied to the minimization directions in the long run destroy the properties 
of the conjugate gradient optimization algorithm. The failure to converge has been 
recently pointed out also by Longsine and McCormick [15] and Schwarz [ 161. 
However, as early as 1974 Ruhe [54] had noted that “this restart is important to 
insure convergence in cases needing many iterations.” 

Inspection of the Figs. 6 and 7 shows that a good value of NREST is between 10 
and 20. The same conclusion was arrived at when the experiments were made on 
the matrices with N= 156 and N = 1802. The case NREST = 1 is quite peculiar: 
SRQMCG2(L) reduces to a preconditioned CG method combined with the Ritz 
projection procedure. Figures 6 and 7 show that the efficiency of this scheme is 
lower than that obtained using any value of NREST smaller than 50. 

Figures 6 and 7 stress the importance of the restarting step to have a good 

(k) r 
.,j -2 

-3 
-4 
-5 
-6 
-7 
-a 

-9 
-10 
-11 
-12 

d30 
I I I 

10 20 30 40 50 60 
ITERATIONS 

FIG. 5. Single [ri:)] and average [r$)] convergence profiles in the calculation of the leftmost p 
eigenpairs by the accelerated simultaneous iteration scheme SRQMCGZ(L) for the matrix with N = 156. 
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FIG. 6. Convergence profiles in the calculation of the leftmost p eigenpaks by the accelerated 
simultaneous iteration scheme SRQMCGZ(L) when a Ritz projection step is implemented in the 
restarting procedure, for several values of NREST (N= 812). 
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FIG. 7. The same as Fig. 6, for N = 2304. 
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FIG. 8. Convergence profiles in the calculation of the leftmost p eigenpairs by the accelerated 
simultaneous iteration scheme SRQMCGZ(L) with (curve 1) and without (curve 2) the implementation 
of the Ritz projection step in the restarting procedure (NREST = 20). 

(k) 
r 

a 

L 
lb70 

I I I I 
100 200 300 400 

ITERATIONS 

5c 10 

FIG. 9. Comparison between the convergence rates of SRQMCGZ(L) (curves 1) and SRQMCGl(L) 
(curves 2) for NREST = 20. In the restarting procedure a Ritz projection step is performed. 
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convergence. Figure 8 shows that the simple restarting is substantially improved if 
the initial set Xf(k) is the outcome from a Ritz projection step onto span(Xck’) 
determined by the last current eigenvector approximations. 

Finally the performances of SRQMCGl(L) and SRQMCG2(L) are compared in 
Fig. 9. In keeping with the results from the simultaneous scheme without accelera- 
tion, Fig. 9 emphasizes the superiority of SRQMCG2(L) to SRQMCGl(L). The 
former is therefore to be preferred in the simultaneous preconditioned evaluation of 
the leftmost eigenspectrum of large arbitrarily sparse finite element matrices. 

3. CONCLUSIONS 

The following remarks are worth summarizing. 

(1) The Rayleigh quotient conjugate gradient iterations for the simultaneous 
computation of the leftmost p eigenpairs of symmetric positive definite problems 
[15, 163 do not lead to practical convergence when A is a large arbitrarily sparse 
finite element matrix. 

(2) An acceleration of the simultaneous iterations based on a preconditioning 
has been proposed, implemented, and numerically tested upon several finite element 
matrices with size between 156 and 2304. The results show that the smallest p (with 
p = 15) eigenpairs are accurately determined by the preconditioned scheme after a 
number of iterations which is much smaller than N, and particularly so for the 
largest values of N. 

(3) The performance of the accelerated algorithm has been explored with two 
different and inexpensive preconditioners. The simple diagonal scaling proved 
unreliable in at least two examples. By contrast the pointwise incomplete Cholesky 
factorization turned out to be a robust, reliable, and efficient technique of precondi- 
tioning. 

(4) To have practical convergence the accelerated scheme is to be restarted 
after a prescribed number of iterations NREST. Convergence is improved if the 
current eigenvector approximations at the restart are preliminarily processed by a 
Ritz projection step. In all the experiments a good value for NREST was between 
10 and 20. NREST close to 20 proved appropriate irrespective of the matrix size N. 

(5) Two different preconditioned schemes were analysed, according to the 
original algorithms implemented in [ 15, 161. Surprisingly enough, their behaviours 
were quite different. The method derived from [15] turned out to converge faster 
than that based on the work [16]. 

(6) The promising results obtained with the preconditioned iterations suggest 
that further improvement in the computational cost can be achieved by a suitable 
vectorization of the algorithms. Investigations along this direction are currently 
under way at the University of Padua, Italy. 
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